91 research outputs found

    WFIRST and EUCLID: Enabling the Microlensing Parallax Measurement from Space

    Get PDF
    The Wide Field Infrared Survey Telescope (WFIRST) is expected to detect hundreds of free-floating planets, but it will not be able to measure their masses. However, simultaneous microlensing observations by both Euclid and WFIRST, separated by ∼100,000 km in orbits around the Sun-Earth L2 Lagrange point, will enable measurements of microlensing parallax for low-mass lenses such as free-floating planets. Using simple Fisher matrix estimates of the parallax measurement uncertainties, we show that high-cadence observations by Euclid could be used to measure ∼1 free-floating planet microlens parallax per 6 days of simultaneous Euclid observations. Accounting for Euclid\u27s pointing constraints, it could therefore potentially measure ∼20 free-floating planet parallaxes, with 120 days of observations split equally between Euclid\u27s main mission and an extended mission, with the potential to increase this number if spacecraft pointing constraints can be relaxed after the end of the main mission. These Euclid observations would also provide additional mass measurements or cross-checks for larger numbers of WFIRST\u27s bound planets, among other benefits to several science cases

    Erratum: WFIRST and EUCLID: Enabling the Microlensing Parallax Measurement from Space (Astrophysical Journal Letters (2019) ApJL 880 (L32) DOI: 10.3847/2041-8213/ab2da5)

    Get PDF
    The top panel of Figure 3 in the published article was left out of the published version. Here we provide the full Figure 3 showing both panels. The bottom panel is unchanged from that shown in the published article.The authors thank Radek Poleski and Will Dawson for alerting them to the incorrect figure.(Figure Presented)

    Détection d'exoplanètes par effet de microlentille gravitationnelle : des observations à la caractérisation

    Get PDF
    L'utilisation des microlentilles gravitationnelles dans la recherche d'exoplanètes a débuté en 1995. Les premiers résultats furent rapides, puisque la première exoplanète fut détectée en 2003 par les collaborations MOA et OGLE. Aujourd'hui, plus de vingt exoplanètes ont été publiées et ce nombre va considérablement augmenter dans les prochaines années avec le lancement des télescopes de surveillance KMTNet et les observatoires spatiaux EUCLID et WFIRST. Lorsqu'une étoile "proche", la microlentille, croise la ligne de visée entre la Terre et une étoile plus distante, la source, le flux de cette dernière est alors amplifié. Si par chance, une planète orbite autour de cette lentille, elle va également produire une amplification de faible amplitude. La courbe de lumière de l'évènement présente alors une signature typique : la déviation planétaire. Dans ce manuscript, nous présentons tous les outils théoriques et observationnels nécessaires à la détection d'exoplanète par la méthode des microlentilles gravitationnelles. Nous présentons ensuite l'étude de deux cas spécifiques : MOA- 2010-BLG-411Lb, une binaire composée d'une naine brune autour d'une naine M, et MOA-2010-BLG-477Lb, un super-Jupiter orbitant une étoile M. Une uniformisation des résultats sur les planètes détectées par effet de mircolentille gravitationnelle est également présentée. Deux problèmes majeurs compliquent la détection de planètes par la méthode des microlentielles gravitationnelles. Premièrement, le phénomène de microlentille gravitationnelle est peu probable pour une étoile donnée (une chance sur un million). Il faut donc observer des champs très riche en étoiles, tel que le Bulbe Galactique. Chaque nuit, les collaborations OGLE et MOA observe le Bulbe Galactique afin de repérer les évènements de microlentilles. Le second problème est que les déviations planétaires sont très courtes, d'une durée d'une heure à quelques jours pour les planètes les plus massives. Il faut donc observer les évènements de microlentilles en continu. C'est pour cela qu'une batterie de télescopes est répartie sur tout l'Hémisphère Sud. Le nombre d'évènements détectés chaque saison a considérablement augmenté durant les dernières années, obligeant les télescopes de suivi à faire des choix quand aux cible à observer. Nous avons décidé de développer un nouveau logiciel automatique permettant de faire ce choix à notre place. Il a été testé sur quatre années d'observations et l'analyse statistique des résultats est présentée. Nous espérons utiliser ces nouveaux résultats pour mieux contraindre un modèle de notre Galaxie.The search of exoplanets using gravitational microlensing started in 1995. First results come quickly and the first exoplanet has been detected on 2003 by the OGLE and the MOA collaborations. Nowadays, more than twenty exoplanets are published and the number of detections should rise a lot in the coming years with the launch of KMTNet survey and EUCLID and WFIRST space-based observatories. When a "close" star, the lens, cross the line of sight between the Earth and a more distant star, the source, the luminosity of this source is magnified. By chance, if a planet orbits this lens star, it produces a second magnification of lower amplitude. The lightcurve of the event then shows a typical signature : a planetary deviation. In this manuscript, we present the theoritical and observational tools needed to detect planets with gravitational microlensing. We present two studies on two special events : MOA-2009-BLG-411L, a lens formed by a brown dwarf around an M-dwarf, and MOA-2010-BLG-477Lb, a super-Jupiter orbiting an M star. We finally present a study on planets already published in order to standardize theses results. Two major problems make this research difficult. First, the occurence of a microlensing event for a single star is very low (one in a million). We then need to observe very dense fields, such as the Galactic Bulge. Each night, OGLE and MOA surveys analyze the Galactic Bulge to detect events. The second problem is the planetary deviation is very short, one hour to few days for most massive planets. This is why we have to continously observe events and use telescopes all around the Southern Hemisphere. The rapid increase of detection during the last years forces the follow-up telescopes to choose which targets they need to observe. We so decided to develop a new software to make automatically this choice. At the end of this manuscript, we present a statistical study of microlensing parameters from four observational seasons. We expect these results will help to constrain theoritical model of the Milky Way in the future

    Magnifying NASA Roman GBTDS exoplanet science with coordinated observations by ESA Euclid

    Full text link
    The ESA Euclid mission is scheduled to launch on July 1st 2023. This White Paper discusses how Euclid observations of the Galactic Bulge Time Domain Survey (GBTDS) area could dramatically enhance the exoplanet science output of the Nancy Grace Roman Space Telescope (Roman). An early Euclid pre-imaging survey of the Roman GBTDS fields, conducted soon after launch, can improve proper motion determinations for Roman exoplanet microlenses that can yield a factor of up to 5\sim 5 improvement in exoplanet mass measurements. An extended Euclid mission would also enable the possibility of sustained simultaneous observations of the GBTDS by Euclid and Roman that would achieve large gains in several areas of Roman exoplanet science, including science that is impossible to achieve with Roman alone. These include: a comprehensive demographic survey for free-floating planets that includes precision mass measurements to establish the true nature of individual candidates; detection, confirmation and mass measurements of exomoons; direct exoplanet mass measurements through parallax and finite source size effects for a large sample of bound exoplanets detected jointly by Euclid and Roman; enhanced false-positive discrimination for the large samples of transiting planets that Roman will detect. Our main recommendation to NASA and ESA is to initiate a Joint Study Group as early as possible that can examine how both missions could best conduct a coordinated campaign. We also encourage flexibility in the GBTDS scheduling.Comment: 15 pages. Submission to the NASA Roman Core Community Survey White Paper Cal

    Analiza produktivnosti autora Sveučilišta Josipa Jurja Strossmayerau Osijeku u razdoblju od 2011. do 2015. godine

    Get PDF
    U ovom radu prikazana je produktivnost autora Sveučilišta Josipa Jurja Strossmayera u Osijeku za razdoblje od 2011. do 2015. godine upotrebom bibliometrijskih pokazatelja kroz skup baza podataka Web of Science Core Collection (WoS CC). U analizi su kao osnova uzeti u obzir svi rezultati dobiveni pretragom po adresi Sveučilišta i svake pojedine sastavnice Sveučilišta. Analiza je napravljena prema određenim bibliometrijskim pokazateljima: broju objavljenih radova po sastavnici, njihovoj citiranosti te po h-indeksu sastavnice za navedeno razdoblje, broju objavljenih radova u pojedinoj godini, vrsti dokumenta, znanstvenom području koje pokriva pojedina WoS CC-kategorija, broju radova objavljenih u hrvatskim ili inozemnim časopisima, broju radova objavljenih u zbornicima radova koji su indeksirani u WoS CC te po kvartilu časopisa

    Measurement of the Free-Floating Planet Mass Function with Simultaneous Euclid and WFIRST Microlensing Parallax Observations

    Get PDF
    Free-floating planets are the remnants of violent dynamical rearrangements of planetary systems. It is possible that even our own solar system ejected a large planet early in its evolution. WFIRST will have the ability to detect free-floating planets over a wide range of masses, but it will not be able to directly measure their masses. Microlensing parallax observations can be used to measure the masses of isolated objects, including free-floating planets, by observing their microlensing events from two locations. The intra-L2 separation between WFIRST and Euclid is large enough to enable microlensing parallax measurements, especially given the exquisite photometric precision that both spacecraft are capable of over wide fields. In this white paper we describe how a modest investment of observing time could yield hundreds of parallax measurements for WFIRST's bound and free-floating planets. We also describe how a short observing campaign of precursor observations by Euclid can improve WFIRST's bound planet and host star mass measurements.Comment: Astro2020 White Pape

    Integration of functional complex oxide nanomaterials on silicon

    Get PDF
    The combination of standard wafer-scale semiconductor processing with the properties of functional oxides opens up to innovative and more efficient devices with high value applications which can be produced at large scale. This review uncovers the main strategies that are successfully used to monolithically integrate functional complex oxide thin films and nanostructures on silicon: the chemical solution deposition approach (CSD) and the advanced physical vapor deposition techniques such as oxide molecular beam epitaxy (MBE). Special emphasis will be placed on complex oxide nanostructures epitaxially grown on silicon using the combination of CSD and MBE. Several examples will be presented, with a particular stress on the control of interfaces and crystallization mechanisms on epitaxial perovskite oxide thin films, nanostructured quartz thin films, and octahedral molecular sieve nanowires. This review enlightens on the potential of complex oxide nanostructures and the combination of both chemical and physical elaboration techniques for novel oxide-based integrated devicesAC acknowledges the financial support from 1D-RENOX project (Cellule Energie INSIS-CNRS). J.M.V.-F. also acknowledges MINECO for support with a Ph.D. grant of the FPI program. We thank David Montero and L. Picas for technical support. We also thank P. Regreny, C. Botella, J.B. Goure for technical assistance on the Nanolyon technological platform. We acknowledge MICINN (MAT2008-01022 MAT2011-28874-c02-01 and MAT2012-35324), Consolider NANOSELECT (CSD2007-00041), Generalitat de Catalunya (2009 SGR 770 and Xarmae), and EU (HIPERCHEM, NMP4-CT2005-516858) projects. The HAADF-STEM microscopy work was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. This research was supported by the European Research Council (ERC StG-2DTHERMS), Ministerio de Economía y Competitividad of Spain (MAT2013-44673-R) and EU funding Project “TIPS” Thermally Integrated Smart Photonics Systems Ref: 644453 call H2020-ICT-2014-1S

    ROME/REA : a gravitational microlensing search for exoplanets beyond the snow line on a global network of robotic telescopes

    Get PDF
    Funding: KH acknowledges support from STFC grant ST/R000824/1.Planet population synthesis models predict an abundance of planets with semimajor axes between 1 and 10 au, yet they lie at the edge of the detection limits of most planet finding techniques. Discovering these planets and studying their distribution is critical to understanding the physical processes that drive planet formation. ROME/REA is a gravitational microlensing project whose main science driver is to discover exoplanets in the cold outer regions of planetary systems. To achieve this, it uses a novel approach combining a multiband survey with reactive follow-up observations, exploiting the unique capabilities of the Las Cumbres Observatory global network of robotic telescopes combined with a Target and Observation Manager system. We present the main science objectives and a technical overview of the project, including initial results.PostprintPeer reviewe

    Euclid-Roman joint microlensing survey: early mass measurement, free floating planets and exomoons

    Get PDF
    Funding: EB gratefully acknowledge support from NASA grant 80NSSC19K0291. The work of DS is funded by a UK Science and Technology Facilities Council (STFC) PhD studentship. EK also acknowledges support from the STFC. EB, JPB and CR’s work was carried out within the framework of the ANR project COLD-WORLDS supported by the French National Agency for Research with the reference ANR-18-CE31-0002. JPB was supported by the University of Tasmania through the UTAS Foundation, ARC grant DP200101909 and the endowed Warren Chair in Astronomy. JR was supported by NASA ROSES grant 12-EUCLID12-0004, the Nancy Grace Roman Telescope, and JPL, which is run by Caltech under a contract for NASA. RP was supported by the Polish National Agency for Academic Exchange via Polish Returns 2019 grant. DM acknowledges support by the European Research Council (ERC) under the European Union’s FP7 Programme, Grant No. 833031.As the Kepler mission has done for hot exoplanets, the ESA Euclid and NASA Roman missions have the potential to create a breakthrough in our understanding of the demographics of cool exoplanets, including unbound, or "free-floating", planets (FFPs). In this study, we demonstrate the complementarity of the two missions and propose two joint-surveys to better constrain the mass and distance of microlensing events. We first demonstrate that an early brief Euclid survey (7 h) of the Roman microlensing fields will allow the measurement of a large fraction of events relative proper motions and lens magnitudes. Then, we study the potential of simultaneous observations by Roman and Euclid to enable the measurement of the microlensing parallax for the shortest microlensing events. Using detailed simulations of the joint detection yield we show that within one year Roman-Euclid observations will be at least an order of magnitude more sensitive than current ground-based measurements. Depending on the exact distribution of FFP, a joint Roman-Euclid campaign should detect around 130 FFP events within a year, including 110 with measured parallax that strongly constrain the FFP mass, and around 30 FFP events with direct mass and distance measurements. The ability of the joint survey to completely break the microlens mass-distance-velocity degeneracy for a significant subset of events provides a unique opportunity to verify unambiguously the FFP hypothesis or else place abundance limits for FFPs between Earth and Jupiter masses that are up to two orders of magnitude stronger than provided by ground-based surveys. Finally, we study the capabilities of the joint survey to enhance the detection and charcterization of exomoons, and found that it could lead to the detection of the first exomoon.PostprintPeer reviewe
    corecore